Конспект лекций Утверждено Редакционно-издательским советом университета в качестве учебного пособия Самара icon

Конспект лекций Утверждено Редакционно-издательским советом университета в качестве учебного пособия Самара



Смотрите также:
1   ...   5   6   7   8   9   10   11   12   13
^

5.2. Вращение вокруг линии уровня


В отличие от метода замены плоскостей проекций, вращением вокруг линии уровня плоскость общего положения в плоскость уровня можно преобразовать за одно вращение.

Сущность метода вращения вокруг линии уровня заключается в том, что плоский геометрический объект совмещается с плоскостью уровня, проходящей через ось вращения. И на соответствующую плоскость проекций плоская фигура проецируется без искажения. Каждая точка заданного геометрического объекта вращается в своей плоскости, перпендикулярной линии уровня. Траектория движения точки – окружность, центр которой находится на оси вращения, а радиус вращения равен расстоянию от точки до оси вращения.

Если за ось вращения взята горизонталь, то траектория вращения точки на горизонтальную плоскость проекций проецируется в виде отрезка, перпендикулярного горизонтальной проекции горизонтали. Новое положение точки будет определено, когда горизонтальная проекция траектории ее движения будет равна натуральной величине радиуса вращения.



Рис. 5.4



Рис. 5.5



Пример: Определить натуральную величину треугольника .



Рис. 5.6

Положение плоскости, при котором она становится плоскостью уровня, определяется вращением только одной ее точки, в данном случае – точки А.
^

Лекция 7

5.3. Вращение вокруг проецирующих прямых


Этот метод, как и метод вращения вокруг линии уровня, предполагает неизменность системы плоскостей проекций, в которой вокруг проецирующей оси вращается геометрический объект – точка, прямая или плоская фигура. При этом все точки, принадлежащие геометрическому объекту, вращаются в параллельных плоскостях, расположенных перпендикулярно оси вращения.
^

5.3.1. Вращение точки





Рис. 5.7

Траектория движения точки – окружность (дуга окружности), центр которой находится на пересечении оси вращения с плоскостью вращения, а радиус вращения равен расстоянию от точки до оси.

На КЧ траектория движения проецируется без искажения на ту плоскость проекций, к которой ось вращения перпендикулярна. На другие плоскости проекций она проецируется в виде отрезка, параллельного оси проекций.
^

5.3.2. Вращение прямой


Вращение прямой линии на КЧ сводится к вращению на один и тот же угол двух принадлежащих ей точек. Однако вращение прямой можно свести к вращению одной ее точки на заданный угол, если учитывать, что при вращении вокруг проецирующей оси проекция прямой на плоскость проекций, к которой эта ось перпендикулярна, остается равной самой себе.



Возьмем отрезок ^ АВ, принадлежащий прямой общего положения, и повернем его вокруг фронтально-проецирующей оси j так, чтобы он стал параллелен горизонтальной плоскости проекций (1 основная задача). На КЧ показана траектория вращения только одной точки, принадлежащей заданной прямой, находящейся на минимальном расстоянии от оси вращения.



Рис. 5.8

Если ось вращения на чертеже не задана, то ее можно выбрать таким образом, чтобы она пересекала прямую, тогда поворот вокруг нее значительно упрощается. На рис. 5.8 горизонтально-проецирующая ось вращения i пересекает горизонтальную прямую (AB’). Тогда вращением вокруг нее одного из концов отрезка прямая преобразовывается в фронтально-проецирующую прямую (2 основная задача).
^

5.3.3. Вращение плоскости


Вращение плоскости вокруг проецирующей оси сводится к вращению на один и тот же угол элементов, определяющих эту плоскость в пространстве.

Возьмем плоскость общего положения и вращением вокруг проецирующей оси преобразуем ее в проецирующую плоскость (^ 3 основная задача). Для этого преобразования необходимо провести одно вращение, при котором линия уровня плоскости превратится в проецирующую прямую.

Чтобы найти натуральную величину плоской фигуры, следует провести второе вращение, преобразовав проецирующую плоскость в плоскость уровня (4 основная задача).



Рис. 5.9
^

5.4. Плоскопараллельное перемещение


Как известно, при вращении системы точек вокруг проецирующей оси одна из проекций плоской фигуры остается конгруэнтной самой себе. Поэтому проекцию, форма и размеры которой остаются неизменными, можно перемещать в новое, удобное для решения задачи положение. При этом не задается радиус вращения точки, а траектория ее движения произвольна. Этот способ преобразования КЧ называется плоскопараллельным перемещением.



Рис. 5.10


Плоскопараллельное перемещение можно рассматривать как частный случай вращения вокруг проецирующих прямых, когда точки заданного объекта перемещаются во взаимно параллельных плоскостях, параллельных одной из плоскостей проекций, а положение осей вращения на КЧ не указывается.





Рис. 5.11

Допустим, что плоскость общего положения, заданную пересекающимися прямыми m и n, необходимо перевести во фронтально-проецирующее положение. Для этого возьмем в плоскости горизонталь h и преобразуем ее во фронтально-проецирующую прямую. Горизонтальную проекцию горизонтали располагаем перпендикулярно оси х в любом месте КЧ. В процессе перемещение расстояния между горизонтальными проекциями точек, определяющих плоскость, остается неизменным.
^

Лекция 8

6. ПОВЕРХНОСТИ


Поверхность – абстрактная фигура, не имеющая толщины. Она ограничивает какое-либо тело, состоящее из металла, пластмассы и т.д. Тело конечно, а поверхность может быть бесконечна. Например, шар ограничен сферой; боковой поверхностью конуса является коническая поверхность.
^

6.1. Способы задания поверхности


Существует несколько способов задания поверхности, в том числе: кинематический, аналитический и графический.

Внедрение в инженерную практику компьютерных технологий обусловило совместное использование графических и аналитических методов задания поверхностей.

С точки зрения аналитической геометрии:

Поверхность – непрерывное множество точек, координаты которых связаны в декартовой системе координат уравнением вида.

Если – многочлен n-й степени, то поверхность называется алгебраической поверхностью n-го порядка.

Если – трансцендентная функция, то и поверхность называется трансцендентной.

В начертательной геометрии поверхность задается графически, а к ее образованию подходят с точки зрения кинематики:

Поверхность – совокупность непрерывных последовательных положений линий, движущихся в пространстве по определенному закону.

Эта движущаяся линия называется образующей, а линия, по которой она движется, – направляющей.

Поверхность считается заданной, если по одной проекции точки, принадлежащей ей, можно построить вторую проекцию. Совокупность независимых условий, необходимых и достаточных для однозначного определения поверхности, называется определителем поверхности:

,

где – поверхность,

(Г) – геометрическая часть определителя поверхности – совокупность геометрических фигур, образующих поверхность;

[A] – алгоритмическая часть определителя поверхности – закон перемещения образующей.



Рис. 6.1


Например, определитель конической поверхности имеет следующий вид:

,

где l – образующая;

а – направляющая;

S – точка пересечения образующих.

Алгоритмическая часть определителя читается следующим образом:

Любая образующая l пересекает направляющую а и проходит через точку S.



На чертеже поверхность может быть задана:

  1. Набором элементов, определяющих эту поверхность.

  2. Очерком поверхности.

  3. Каркасом поверхности.

Очерком поверхности называется проекции контура поверхности на плоскости проекций.

Каркасный способ задания поверхности предполагает, что поверхность можно определить как двупараметрическое множество точек с одной стороны, а с другой – поверхность – однопараметрическое множество линий.

Каркасом (точечным или линейным) называется множество точек или линий, определяющих поверхность.

Каркасным способом задаются такие сложные поверхности с образующими переменного вида, которые нельзя описать математически.




страница10/13
Дата конвертации24.10.2013
Размер0,78 Mb.
ТипКонспект
1   ...   5   6   7   8   9   10   11   12   13
Разместите кнопку на своём сайте или блоге:
rud.exdat.com


База данных защищена авторским правом ©exdat 2000-2012
При копировании материала укажите ссылку
обратиться к администрации
Документы