Проецирование геометрического объекта (точки, линии или фигуры) на одну плоскость проекций не определяет его положения в пространстве (какой-либо проекции точки может соответствовать бесчисленное множество точек в пространстве) и не дает полного представления о нем. Поэтому принято использовать не одну, а две или три взаимно перпендикулярные плоскости проекций – горизонтальную ![]() ![]() ![]() Линии пересечения плоскостей проекций 0x, 0y, 0z называются осями проекций. Они аналогичны осям декартовой системы координат с той разницей, что ось 0x имеет положительное направление влево. ![]() Рис. 2.1 Т.к. любой предмет можно рассматривать как множество точек, проецирование его на плоскость сводится к построению отдельных точек ему принадлежащих. Поэтому все базовые понятия и правила проецирования рассматриваются на примере построения точки. Построим проекции точки А, расположенной в первом октанте пространства (рис.2.2). Для этого через точку проведем проецирующие лучи, идущие перпендикулярно плоскостям проекций. На пересечении этих лучей с плоскостями проекций находятся проекции самой точки А. ![]() Рис. 2.2 Несмотря на наглядность пространственного изображения, работать с ним неудобно, т.к. горизонтальная и профильная плоскости проекций изображаются на нем с искажением. Удобнее совместить эти плоскости с фронтальной плоскостью проекций, развернув их на угол 90 вокруг осей проекций 0x и 0y. При этом ось 0y разворачивается как с горизонтальной, так и с фронтальной плоскостями проекций, поэтому на чертеже она обозначается дважды – 0y и 0y′. Полученный таким образом чертеж называется комплексным чертежом (КЧ), или эпюром Монжа. В связи с тем, что он представляет собой развернутую в плоскость пространственную модель, самой точки на комплексном чертеже нет (рис. 2.3). Проекции точки на КЧ соединяются между собой прямыми линиями, называющимися линиями связи и проходящими перпендикулярно осям проекций. Независимо от того, в каком октанте находится точка, ее горизонтальная и фронтальная проекции всегда лежат на одной линии связи, перпендикулярной оси 0x, а фронтальная и профильная проекция – на линии связи, перпендикулярной оси 0z. ![]() Рис. 2.3 Исходя из рисунка пространственной модели (рис. 2.2) можно выявить взаимосвязь между проекциями точки ^ : 1) расстояние от точки А до горизонтальной плоскости проекций (высота точки) ![]() 2) расстояние от точки А до фронтальной плоскости проекций (глубина точки) ![]() 3) расстояние от точки А до профильной плоскости проекций (широта точки) ![]() Например, расстояние от фронтальной проекции точки до оси 0x равно расстоянию от профильной проекции до оси 0y. Следовательно, по двум любым проекциям точки можно построить третью. Точки могут занимать частное положение в пространстве относительно плоскостей проекций:
Допустим, что точка В лежит на оси 0z, а точка С принадлежит горизонтальной плоскости проекций (рис. 2.4). Для точки С построения следует начинать с проекции, принадлежащей плоскости ![]() ![]() ![]() ![]() Рис. 2.4 ^ ![]() Рис. 2.5 Аксиома евклидовой геометрии гласит: «Через две точки проходит единственная прямая». В связи с этим построение проекций прямой линии на КЧ сводится к построению проекций двух точек ей принадлежащих. Построим проекции прямой d, которой принадлежат точки А и В. Спроецировав их на плоскости проекций, а затем соединив между собой одноименные проекции, получаем проекции прямой (рис.2.5). ![]() Рис. 2.6 На КЧ прямая может быть задана проекциями двух точек (отрезком) или, на основании инвариантного свойства 21, непосредственно своими проекциями (рис. 2.5 б, 2.6). ^ По расположению относительно плоскостей проекций различают прямые общего и частного положения. Прямые не параллельные и не перпендикулярные ни одной из плоскостей проекций называются прямыми общего положения. Признаки и свойства прямой общего положения:
Прямые общего положения могут быть восходящими или нисходящими. ^ восходящей, если по мере удаления от наблюдателя она повышается. Прямая называется нисходящей, если по мере удаления от наблюдателя она понижается. Для того, чтобы определить по КЧ положение прямой, необходимо обратить внимание на то, как дальняя от наблюдателя точка отрезка прямой расположена относительно ближайшей точки: выше или ниже, правее или левее. На рисунке 2.5 изображена восходящая вправо прямая, т.к. наиболее удаленная точка В располагается правее и выше ближайшей точки А. Признак восходящих и нисходящих прямых:
![]() Рис. 2.7 Прямые частного положения подразделяются на прямые уровня и проецирующие прямые. Прямые, параллельные одной из плоскостей проекций, называются прямыми уровня. Существует три вида прямых уровня: горизонталь, фронталь и профильная прямая.
Признаки и свойства горизонтали:
![]() Рис. 2.8
![]() Рис. 2.9 Признаки и свойства фронтали:
Признаки и свойства профильной прямой:
![]() Рис. 2.10 Прямые, перпендикулярные одной из плоскостей проекций, называются проецирующими прямыми. Существует три вида проецирующих прямых: горизонтально-проецирующая, фронтально-проецирующая и профильно-проецирующая прямая. Проекцией проецирующей прямой на плоскость проекций, к которой она перпендикулярна, является точка (след прямой). Все точки, принадлежащие проецирующей прямой, проецируются на ее след. 1. Горизонтально-проецирующая прямая – прямая, перпендикулярная горизонтальной плоскости проекций. ![]() 2. Фронтально-проецирующая прямая – прямая, перпендикулярная фронтальной плоскости проекций. ![]() Рис. 2.12 3. Профильно-проецирующая прямая – прямая, перпендикулярная профильной плоскости проекций. ![]() Рис. 2.13 К числу частных случаев расположения прямых можно отнести и прямые, лежащие непосредственно в плоскостях проекций. Их называют прямыми нулевого уровня. На рис. 2.14 приведены примеры таких прямых: горизонталь h и профильно-проецирующая прямая j располагаются на горизонтальной плоскости проекций, следовательно их фронтальные проекции находятся на оси 0х; фронталь f и профильно-проецирующая прямая р лежат во фронтальной плоскости проекций, а значит их горизонтальные проекции на КЧ совпадают с осью 0х. ![]() Рис. 2.14 ^ Точка пересечения прямой с плоскостью проекций называется следом прямой. На рисунке 2.7 приведены пространственная модель и КЧ прямой l, пересекающей три плоскости проекций, а следовательно, имеющей три следа:
Очевидно, что фронтальная и профильная проекции горизонтального следа (^ ) прямой лежат на осях проекций 0х и 0y соответственно. Проекции фронтального (F) и профильного (P) следов прямой находятся аналогично. ![]() Рис. 2.15 Прямые общего положения пересекают три плоскости проекции и имеют три следа; прямые уровня пересекают две плоскости проекций (имеют два следа); проецирующие прямые пересекают одну плоскость проекции. ^ Теорема Фалеса: Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне. ![]() Рис. 2.16 Используя эту теорему и инвариантное свойство параллельного проецирования: «если точка делит отрезок прямой в данном отношении, то проекция этой точки поделит проекцию прямой в том же отношении», можно легко разделить любой отрезок в заданном отношении. Чтобы на КЧ разделить отрезок в заданном отношении, необходимо в этом отношении разделить его проекции. На рисунке 2.17 отрезок ![]() ![]() ![]() Рис. 2.17 ![]() ^ В отличие от отрезков прямых частного положения, проецирующихся хотя бы на одну из плоскостей проекций в натуральную величину, отрезок прямой общего положения на плоскости проекций проецируется с искажением. Для того чтобы найти его натуральную величину, необходимо провести ряд преобразований. Существует несколько методов нахождения натуральной величины отрезка прямой общего положения и углов наклона его к плоскостям проекций. Одним из этих методов является метод прямоугольного треугольника, в котором находится зависимость длины проекции отрезка от его истинной величины. ![]() Рис. 2.18 ![]() Возьмем прямую общего положения АВ и спроецируем ее на горизонтальную плоскость проекций ![]() ![]() ![]() ![]() Для определения натуральной величины отрезка прямой общего положения и углов наклона ее к плоскости проекций на КЧ необходимо построить прямоугольный треугольник:
![]() Рис. 2.19 Следовательно, для определения угла наклона отрезка к горизонтальной плоскости проекций прямоугольный треугольник строится на базе горизонтальной проекции отрезка, к фронтальной плоскости проекций – на базе фронтальной проекции, к профильной плоскости проекций – на базе профильной проекции.
|